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From PS-splines to NURPS

Paul Dierckx and Joris Windmolders

Abstract. A normalized B-spline representation for Powell-Sabin (PS)
spline surfaces is extended to piecewise rational surfaces (NURPS). We
investigate the adaptation of existing algorithms operating on B-splines
to this more general case, the influence of weights and their geometri-
cal interpretation, the possibility of representing planar sections, and the
conversion from rational B6zier to NURPS surfaces.

§1. Basic Concepts

1.1. PS-splines

Let S2 C R2 be a simply connected subset with polygonal boundary 6Q. Let
A be a conforming triangulation of Q having n vertices Vi with coordinates
(ui, vi), i = 1,..., a, and let A* be a Powell-Sabin (PS) refinement of A (see,
e.g. [3]), where each triangle p E A is divided into 6 subtriangles. A Powell-
Sabin (PS) spline is a piecewise quadratic polynomial with C1 continuity on Q.
Dierckx [1] shows how to calculate a normalized B-spline basis for PS-splines:

Definition 1. A PS-spline surface has a normalized B-spline representation

n23

s(u,v) = E cijBJ(u,v), (u,v)e(2, (1)
i=1 j-1

where cij = (cTj, cjcj) are the B-spline control points and Bi (u, v) are
the normalized B-splines.

This representation shares a number of properties with tensor-product
B-splines, making it a powerful tool for representing surfaces in CAGD. We
summarize the most important properties here. For details we refer to the
original paper [1].
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Fig. 1. Domain triangle.

Property 1. {Bi (u, v)}i~l,...,, is a partition of unity:{ B(uv)_>0, (u,v)Aj,

Zi, •=B•(uv) -l, (u,v) 2 a.

Furthermore, Bij (u, v) is nonzero only on triangles p G A having Vi as a
vertex:

Property 2.

MB• (V) OBq (V()
Bu(V) -_ v -0, 10 i. (2)

The local control, affine invariance and convex hull properties follow im-
mediately. Linear functions can be represented exactly. In particular, we will
make use of the representations

n 3 n 3

U=Z UijjBi (u, v), v j= ZZ , iB(u )

i=1 j=1 i=1 j=1

Definition 2. The PS-triangles tl(Q1,1 , QI,2, Q1,3), l = 1,..., n in the planar
domain have as vertices the B-spline ordinates Qjj(Ujj, V1,j), j = 1, 2, 3.

Consider a domain triangle Pi,j,k(Vi, Vj, Vk) E A with its PS-refinement
(see Figure 1). Denote the B6zier ordinates as se,,, v = i, j, k,1 = 1, 2, 3, 4;
tl,m,UI,m, (1,m) E {(i,j),(j,k),(k,i)} and vi,j,k. They can be written as
unique barycentric combinations of the B-spline ordinates:

So ,l = ce, Qv,i + 00,1 Qv,2 + 70, Qv,3, (3)

tl,m = 
6

1,m 81,2 + frm Srm,3, (4)

Ul,r = 
6

1,m Sj,4 + fl,m Sm,4, (5)

Vi,j,k = Ai,j,k Si,4 + Pi,j,k Sj,4 + Vi,j,k Sk,4. (6)

For a given PS-refinement A*, the position of the B1zier ordinates is
fixed. This is not the case for the B-spline ordinates. The following lemma
however states that there is a restriction on the B-spline ordinates.
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Lemma 1. In order for the basis functions {Bi (u, v)}if,.., to constitute a
partition of unity on 9, it is required that for each vertex Vi, i = 1,... ,n,

the PS-triangle ti(Qi,1 , Qi,2, Qi,3) contains the Powell-Sabin points, i.e., the
B1zier ordinates si,1, 1 = 1, 2, 3, 4, of any domain triangle having Vi as one of
its vertices.

There is a one-one connection between the barycentric coordinates of the
Powell-Sabin points at vertex Vi with respect to ti and the value of the basis
functions BJ(u,v), j = 1, 2, 3, and of their derivatives at Vi, e.g.

Bi1 (Vi) a= i,, B? (V7i) = ij,1 B3 (Vi) = -yi,. (7)

Given a PS-spline surface (1), the corresponding B~zier net can be calculated
efficiently by using convex barycentric combinations of the B-spline control
points only:

Property 3. Applying equations (3)-(6) where the ordinates are replaced by
control points, yields the corresponding B1zier net of the surface.

Finally, via the concept of control triangles, the B-spline control points
give us valuable insight into the shape of the surface:

Definition 3. The control triangles are defined as Ti(C1,1, Cl, 2, Ci, 3 ).

Property 4. Each control triangle Ti(ci,, C1,2, Cl, 3 ) is tangent to the PS-
surface at s (V1 ).

1.2. NURPS

The Normalized B-spline theory for PS-surfaces can now be extended to a
rational scheme just like tensor product B-splines are extended to NURBS.
Referring to Figure 1, we use the boldface notation for the B~zier points,
e.g. Sv,. Points in homogeneous space get a h-superscript, e.g. sh Their

Shrc hy h,z wcomponents are s ,s , vs ",,s

Definition 4. A Non Uniform Rational Powell-Sabin (NURPS) spline surface
has the form

n 3

( =E=1 Ej=i ci wijBi(u,v)

- = j1 =1 wi,jBqB(u,v) (u,v) e f2, (8)

where cij = (cf -, . cf.) are the B-spline control points. We impose that
wij > 0 in order for s(u, v) to be defined anywhere on Q.

If wj = 1, i = 1,... , n, j = 1, 2, 3, then (8) reduces to (1). The following
properties are readily verified:
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Property 5.
n 3

s(u' V) E E cij e*(u, V), (9)
i=1 j=1

where

¢3 (u, v) = w(1B)(u,v)
Ei=I j=1 w,,jB•q(u, V)

and
{ v) 0, (uv) EE 1, E3a

Furthermore, i,j (u, v) is nonzero only on triangles p G A having Vi as a
vertex.

This again implies the local control, affine invariance, and convex hull
properties.

Property 6. A NURPS representation (8) is the 3D-projection in Euclidean
space of a 4D PS-spline in homogeneous space:

n 3

s(u,v) = E ci'jBj (u,v), (11)
i=1 j=1

ca = (Wijcjy, W,,jcj, Wi,jcj, Wi,j. (12)

§2. Evaluation and Subdivision

The evaluation of s(u, v) is performed in two steps:

"* First, the corresponding rational piecewise B~zier representation is cal-
culated.

"* Then, the rational de Casteljau-algorithm calculates a point on this ratio-
nal piecewise quadratic B~zier surface. This section shows how to perform
the first step in a numerically stable way. For the second step, we refer
to Farin [2], Chapter 17.9.

2.1. In homogeneous space

Formulae (3)-(6) can be applied directly in homogeneous space, e.g.
h Ch eh Ch(3

av, ' a•civ,1 +{ 0cvi v,2 +- +0 v,l (13)

[ h~ h,y h,z w3h xs , sh, y, s h :, s.,t

vi, ~ )i s h h (14)
k Ai,j,k ,4 "-+ /ij,k j,4 + 1

'i,j,k Sk,4

S(Vh,x Vh,y vh, Vh=ki,j,kVi,j,k, idj,k,Viw,j,k,
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Projection back to Euclidean space yields

1shz• = hy h,z h, hy h

S W % W ) Vij,k =~* II. ,1 W
vI v7 / VF., V!-jk' Vr,,,

This algorithm has a serious drawback: if the weights vary greatly in
h,r h,rmagnitude, the coordinates sv, ,Vi 1k, r = x,y,z are blown away; the cal-

culations don't operate in the convex hull of the control net anymore, and
numerical stability is endangered.

2.2. A rational algorithm

The idea behind the rational de Casteljau-algorithm from Farin [2] is to im-
prove numerical stability by rearranging the calculations, avoiding working in
homogeneous space:

av,( "= Ov,I Wv,1 + "
3
v,L Wv,2 + "Yv,l Wv,3. (15)

Set

= avL wv, 1 > 0, _,- v,j Wv,2 >_ 0, Y,,l Wv, 3 > 0. (16)
8v,I 8 v,l 5v,l

Then
Sv,I = 5v,L cv,1 + A1,1 Cv,2 + 7v,j Cv,3 (17)

with
&v,l + &, + jvl = 1. (18)

The point Sv,l is a convex barycentric combination of Cv,1, Cv,2 and Cv,3, SO
numerical stability is guaranteed. Likewise, we find

tm = 6
L,m S0 +-,m E", , (19)I'm 81,2 8m,37

lm =UL, m 1,4 + El,m 8
5

m,4, (20)

VF i,j,k A si,4 + 1i,j,k Sý'4 + Vij,k sw,4, (21)

61__,m sw EI,m Sw,3

_im S,2, EL,m t , (22)
I'm I'm

- 1,m s, 4  m -,Um sn,4 (23)
,Uw , l'm - w ,
I'm ELIm

A si,4,k S 1 4/.ij,k S,_4 - 'i,j,k S..•,4
,, k , = F.(24)

10 1,3,k ,j,k

where

1,.m + FL,m = 6
1,m + il,. = Ai,j,k + Ai,j,k + Fi,• = 1,
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and finally

tl,m = bl,mn SI, 2 + j1,m Sm,3, (25)

Ul,m = 
6
1,m S1,4 + lrm Sm,4, (26)

Vij,k = Ai,j,k Si, 4 + 1i,j,k Sj,4 + iVijk Sk,4. (27)

All formulae are convex barycentric combinations operating in the convex
hull of the B-spline control net. After having computed the rational B1zier
representation, Farin's rational de Casteljau algorithm can be used to evaluate
the surface at any point (u, v) E Q.

2.3. Subdivision on uniform triangulations

The evaluation and subdivision of spline curves and surfaces are closely related
problems. For the particular case of a uniform triangulation A, a subdivision
scheme for PS-surfaces has been derived [4]. As an application, it was shown
how a wireframe of the surface can be calculated in an efficient and numeri-
cally stable way. This scheme can easily be extended to NURPS on uniform
triangulations again using Farin's technique from the previous section. The
details are omitted here.

§3. Control Planes

Recall that the NURPS representation inherits the convex hull, affine invari-
ance, and local control property from the normalized B-spline representation.
This section adds the tangent property to the inheritance list, and shows how
the rational representation allows for more flexibilty when designing surfaces.

3.1. Tangent property

Referring to the locality of the B-splines (2), it is easy to verify that the
evaluation of s(u, v) and its derivatives at vertex Vi yields

S(Vi) = &i,1 ci,1 + Ai cl,2 + 5,i, Ce,3 , (28)

as(y7)
au = ei,1 ci, 1 + ei,2 Ci,2 + ei, 3 Ce,3 , (29)

09s(Yd)O9V - di ci, 1 + di, 2 Ci,2 + di, 3 Ci,3, (30)

for some
el,1 + el,2 + ei, 3 = di,1 + di, 2 + di,3 = 0.

It follows that the control triangle at Vi is tangent to the surface at s(V1 ), i.e.,
any point p in the tangent plane is a barycentric combination of the control
points Ci,1, ci,2 , ci,3:

p= s(Vi)+a ! +b ( , a, be ]R.

This is illustrated in Figure 2 (left).
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Fig. 2. NURPS surface and its control planes; local planar effects.

3.2. Shape parameters

Farin [2] introduces the concept of shape parameters with respect to rational
Bdzier curves. A geometric handle allows the designer to influence the shape
of the curve in a predictable way, rather than requiring the input of numbers
for the weights. In the same work, it is stated that this property does not
carry over to rational Bdzier surfaces on triangles, but shape parameters can
be defined for NURPS.

Recall that (&v,,,iV,1,'•V,1) are the barycentric coordinates of Sv,l with
respect to control triangle T,(cv,1, Cv,2, Cv,3). From (16) it follows that sv,1

can be moved within T, to a new location , while keeping its
weight s', constant. The corresponding PS-weights are found immediately
as

Wv,1 = ," Wv,2 -- V (31)
oav,1 0,1 7'v,1

This shows how (&z,1,,&,1, ývy) can be used as shape parameters.

3.3. Planar sections

Definition 5. Let [t 1 ,t 2 ,. .. ,tn] denote the convex hull of the 3D points
tl~t2, .. • tn.

Definition 6. Let S(A) denote the image of a subset A C 9 under (8).

Definition 7. Let r(a, b, c) denote the Bdzier subtriangle in the domain plane
with vertices a, b and c.

If the control triangles of adjacent vertices Vi, Vj, Vk are chosen to be
coplanar, then the surface section S (pijj,k (Vi, Vj, Vk)) will be in the same
plane, as a consequence of the convex hull property. However, using the
weights in the NURPS representation, it is possible to achieve more local
planar effects.

The rational evaluation algorithm from Section 2.2 reveals that for wi,1 =

Wi,2 = WO = w - 00, i E (1,..., n) and referring to Figure 1, the following
holds on the domain triangle pi,j,k(Vi, Vj, Vk):

tid --- i~ ,Es,jS 3

t ij + • Si,2 + - Sj,3. (32)
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Sb 0 ,b 0,2,0

b2,0,0  

1,1,0

Fig. 3. B~zier triangle.

Thus,
lim tij = si,2. (33)

WL- 00

Likewise, for the other B~zier points of r (s,1i,j, Vi,j,k), we find

sij = aij ci,1 + /Ji,l ci, 2 + Yi,1 ci,3 , I = 1, 2,4, (34)

lim uiu = lim Vij,k = si, 4. (35)

Consequently,
S (T 7(i,1, t ,Vj,k)) = [sii, si,2 , Si,4]

Similar reasoning on the other B1zier subtriangles shows that

S (T (si1, Vi,j,k, tk,i)) = [si, 1 , Si,4 Si, 3 ],

S (r (tij, Sj,1 , Vij,k)) = [Si, 2 , Si, 4 ],

S (T (tk,i, Vi,j,k, Sk,1)) = [Si, 3 , Si,4],

S (T (V,,j,k, Sj,i, tj,k)) = [si,4]

S (T (vi,j,k, tj,k, Sk,1)) = [si, 4•]

and therefore,

S (Pi,j,k (Vi, Vj, Vk)) = [si,, si,2 , si,4 , si,3] C [Ci,, Ci,2, Ci,3]

The latter image is a planar surface section. Figure 2 (right) shows some
NURPS surface with very large weights at a vertex.

§4. Conversion from Rational B~zier to NURPS Representation

Suppose we are given a rational quadratic B1zier surface on one domain tri-
angle (see Figure 3) P(si,,, Sj,l, 8k,1)

b(u,v) b h B2 t 2,t 3), (36)
°il,i2,i3 ,1,i2,i3(t'1•

i1 +i 2 +i3=2

where il, i2 , i3 > 0, (u, v) E p and (t 1, t2 , t 3 ) are the barycentric coordinates of
(u, v) with respect to p. In this section it is shown how a NURPS representa-
tion

3

s(u, v)= E ZcmB'(u,v) (37)
l=i,j,k m=1

of the given surface, for a specific choice of the PS-triangles, is immediately
obtained. To simplify the notation, the surfaces are considered in homoge-
neous space.
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'lbo, 1 ,2

, 1,0,0 ,I I I' b~~

-- ij O--' 1,0,0

8,i' b2 ,0, 0  d1 0 0 O .0 0 ,0

Fig. 4. Subdivision at vij,k and tij.

Lemma 2. Suppose we are given a triangle t (Vi, Vj, Vk) with barycenter z.

If W, denotes the midpoint of the side opposite to V,, then (z + VI) /2 is the
barycenter of the triangle t (IVI, Wm,, Wn) , l,m, n E {i, j, k}, l1 m 0 n.

The construction of the NURPS representation relies on the de Castel-
jau-algorithm for B~zier triangles (see, e.g., [2]). Subdivision at the barycenter

of p and at the midpoint of edge sisj, 1 (see Figure 4) yields the new B~zier
points

blh 1 h h h
1,0,0 = 1 (b2,0,0 + bl,1,o + bo,1 ) , (38)

bl,h 1 bh h hb01,0 = (,i,o + bo,2,0 + bo,1,1) (39)

bl,h 1 bho,o,1 = ((i,o,+ + bO,1 1 + bo,,) (40)

2,o0,+ = ( 1,oo b 1,h + , (41)

dho = (bhoo + b1, 1,0 ), (42)10, 2

do:l, = 2(b ,1 ,o + bo,2,0), (43)

1,h 1 h -1,h,
do:o,1= 2(bj:h,0 O , + b1,0), (44)

02, l(dlo,h + d1,h). (45)

After subdivision of the two remaining edges, the 6 subtriangles thus obtained
constitute a PS-refinement of p, say, with interior point Vi,j,k and edge points
tij, tj,k , tk,i (see Figure 5, left). A NURPS representation of the given surface

on this PS-refinement is easily obtained (see Figure 5, right). Set

Qv,1 = SVI, v = i,j, k,

Qi,2 = Qj,3 = tij, Qj,2 = Qk,3 = tj,k, Qk,2 = Qi,3 =tk,i,

and
chj = bh c h bhh = b h

2, 2,0,01 1,1,0, i,3 - 1,0,17
cj =bh ch,2 h bh Ch = bbh

0,2,0' 0,1,11 j,3 1,1,0,

C h = b h ch, =bh Ch - b hk , 1 0, 0 ,2 , 1,0,1 k,3 -- 0,1,1,
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Sk,2 4,3
kk ,s Ck

Uk,

8i,- L$Iý,2 
.3

Fig. 5. PS-refinement.

Then by Lemma 2, it follows that the PS-points sv,i, 1 = 1, 2, 3, 4 are inside the
PS-triangle t, v = i,j,k. Now recall formula (13) for v = i,j,k, and I = 4,
and formula (14), with av,4 = 0,v,4 = 'v,4 = 1, resp. Ai,j,k = i,j,k = Vi,j,k

in order to calculate the corresponding B~zier points of this NURPS surface.
It turns out that these equations are exactly the same as the subdivision
formulae (38)-(41). Likewise, since in (3)-(5)

1 1
(av,2, 

3
v,2 -Y,,2) = ( , - , 0),

1(,0, 1),

1 1
(61"'el.) (- -),

for v = ij, k and (l, m) G {(ij), (j, k), (k, i)} , similar reasoning shows that
calculating the corresponding B6zier net of (37) exactly yields the B6zier net
of (36) after the proposed subdivisions. Hence, b(u, v) = s(u, v) on p.
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